4.5 Homeostasis and Response
Foundation / Higher

Time: 278 minutes

Marks: 272 marks

Comments:
Q1.
Diagrams A, B and C show cells from different parts of the human body, all drawn to the same scale.

(a) Which cell, A, B or C, appears to have adaptations to increase diffusion into or out of the cell? Give one reason for your choice.

(b) (i) Cell C is found in the pancreas.

Name one useful substance produced by the pancreas.

(ii) Use information from the diagram to explain how cell C is adapted for producing this substance.

Q2.
Diabetes is a disease in which a person’s blood glucose concentration rises to higher levels than normal.

Diabetes is caused by insufficient insulin being produced.

(a) (i) Which organ monitors blood glucose concentration?

__

(ii) Insulin reduces the concentration of glucose in the blood.

Describe how insulin does this.

__

(b) A person with diabetes can be monitored in three ways:

• measuring the blood glucose concentration after fasting (going without food for 12 hours)
• measuring the amount of glucose attached to red blood cells: this is a measure of the average blood glucose concentration over the previous three months
• measuring the concentration of insulin in the blood after fasting

The manufacturer of a new treatment for diabetes, called Diacure, publishes the following two claims.

1. 98.6% of all people who used Diacure reported an improvement in their condition.

2. An independent study of 30 diabetic patients showed a significant reduction in blood glucose concentrations and a significant increase in insulin production, as shown by the graph.

![Graph showing blood glucose and insulin levels before and after using Diacure.]

(i) Which of the manufacturer’s claims is not based on scientific evidence?
Q3.

Coordination of the body can be affected by chemicals called hormones

(a) (i) Where are hormones produced?

__

(ii) Why might the data in this study be unreliable?

__

(iii) The manufacturer did not draw attention to the data for the amount of glucose attached to red blood cells.

Suggest an explanation for this.

__

(iv) The study of diabetic patients was carried out by an independent company.

Why is it important that the study should be independent?

__

(Total 7 marks)
(ii) How do hormones move around the body?

(1)

(b) Insulin is a hormone.

(i) Where is insulin produced?

(1)

(ii) Explain the role of insulin in controlling blood sugar levels.

(4)

(Total 7 marks)

Q4.

The diagram shows part of the human digestive system.

(i) Name part B.
(ii) Describe the role of B and D in reducing blood sugar levels.

Q5.

The diagram shows a reflex pathway in a human.

(a) Label the receptor on the diagram.

(b) Label the effector on the diagram.

(c) (i) Suggest a stimulus to the hand that could start a reflex response.

(ii) Describe the response that this stimulus would cause.
(d) Put arrows on the diagram to show the direction of the path taken by the nerve impulses. (1)

Q6.
(a) During respiration, sugar is oxidised to release energy. Complete the equation for respiration.

Sugar + ______________ = ______________ + ______________ + energy (3)

(b) The photograph below shows an athlete using an exercise machine. The machine can be adjusted to vary the rate at which the athlete is required to work.

The athlete’s heart rate and breathing rate were measured at different work rates.

The table below shows the results which were obtained.

<table>
<thead>
<tr>
<th>WORK RATE (J/s)</th>
<th>HEART RATE (beats/min.)</th>
<th>BREATHING RATE (breaths/min.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>86</td>
<td>9.6</td>
</tr>
<tr>
<td>60</td>
<td>106</td>
<td>10.0</td>
</tr>
<tr>
<td>80</td>
<td>112</td>
<td>10.4</td>
</tr>
<tr>
<td>100</td>
<td>122</td>
<td>10.4</td>
</tr>
<tr>
<td>120</td>
<td>135</td>
<td>11.4</td>
</tr>
<tr>
<td>140</td>
<td>143</td>
<td>14.5</td>
</tr>
<tr>
<td>160</td>
<td>156</td>
<td>15.8</td>
</tr>
<tr>
<td>200</td>
<td>174</td>
<td>30.5</td>
</tr>
</tbody>
</table>

Plot the data on the graph paper below.
(c) Explain, as fully as you can, the advantages to the body in the change in breathing and heart rates.
Q7.

The internal body temperature determines how much a person sweats. The graph shows the effect of different internal body temperatures on a person’s rate of energy loss by sweating.
(a) How much more energy was lost from the body each second by sweating when the body temperature was 37.6 °C than when it was 36.6 °C? Show clearly how you work out your final answer.

Amount of energy = ________________ joules per second

(2)

(b) Explain why a person would feel more thirsty when the body temperature was 37.6 °C than when it was 36.6 °C.

(2)

(c) Explain how sweating helps to control body temperature.

(3)

(Total 7 marks)

Q8.

Hormones are sometimes used to regulate human reproduction.

(a) (i) What is a hormone?

(1)

(ii) How are hormones transported around the body?

(1)
Describe the benefits and possible problems that may result from the use of hormones to regulate human reproduction. You should refer to fertility drugs and contraceptives in your answer.

To gain full marks in this question you should write your ideas in good English. Put them into a sensible order and use the correct scientific words.

Q9.

The pancreas is involved in digestion and controlling the internal conditions of the body.

(a) Name two digestive enzymes produced by the pancreas.

1. __

2. __

(b) Diabetes may be caused by a lack of insulin.

Part of the treatment for someone with diabetes is to pay careful attention to the diet.

(i) Give one symptom of diabetes.

(ii) Give one way in which a diabetic may be advised to change their diet.

(iii) How does this change in diet help the diabetic?
(iv) State one other way in which the symptoms of diabetes may be treated.

(c) Many of the cells in the pancreas contain large numbers of ribosomes. What is the function of ribosomes in a cell?

Q10.

The graph shows the concentration of glucose in the blood of two people. Person A is a non-diabetic. Person B has diabetes. Each person ate 75 grams of glucose at 1.0 hours.
(a)
(i) What was the maximum concentration of glucose in the blood of Person A?

_________________________________ mmol per dm³

(1)

(ii) After eating the glucose, how long did it take for the concentration of glucose in the blood of Person B to return to normal?

__ hours

(1)

(b) A diabetic person does not produce enough insulin.

(i) Which organ produces insulin?

__

(1)

(ii) Write the letter X on the graph to show one time when the blood of Person A would contain large amounts of insulin.

(1)
A high concentration of glucose in the blood can harm body cells as a result of osmosis. Explain why.

Q11.
Reflex actions are rapid and automatic.

(a) Name the following structures in a reflex action.

(i) The structure that detects the stimulus.

(ii) The neurone that carries impulses to the central nervous system.

(iii) The neurone that carries impulses away from the central nervous system.

(iv) The structure that brings about the response.

(b) Describe what happens at a synapse when an impulse arrives.
(c) Some people have a condition in which information from the skin does not reach the brain.

Explain why this is dangerous for the person.

Q12.

In diabetics blood glucose concentrations are sometimes abnormal.

(a) Name the organ that monitors the concentration of glucose in the blood.

(1)

(b) Diabetics can measure their blood glucose concentration.

The graph shows the best blood glucose concentration and the acceptable range of blood glucose concentration at different times.
What is the acceptable range for the blood glucose concentration before meals?
From _________________________ to _______________ mmol per dm³

(c) The amount of insulin a diabetic injects can be changed so that blood glucose concentration is kept near to the best level.

Two hours after eating breakfast a diabetic measures his blood glucose concentration.
His blood glucose concentration is 13 mmol per dm³.

He reads these instructions:

• for every 2 mmol per dm³ of blood glucose above the best concentration, inject 1 unit more of insulin

• for every 2 mmol per dm³ of blood glucose below the best concentration, inject 1 unit less of insulin.

How should he change his normal insulin injection to bring his blood glucose level to the best concentration?

Show clearly how you work out your answer.
Q13.
The human body produces many hormones.

(a) (i) What is a hormone?

Answer = __

(1)

(ii) Name an organ that produces a hormone.

(1)

(iii) How are hormones transported to their target organs?

(1)

(b) Describe how the hormones FSH, oestrogen and LH are involved in the control of the menstrual cycle.

(3)

(Total 6 marks)
Q14.
It is important that the concentration of glucose (sugar) in the blood is controlled.

(a) (i) Which hormone controls the concentration of glucose in the blood?

__ (1)

(ii) Which organ produces this hormone?

__ (1)

(b) The concentration of glucose in the blood of two people, A and B, was measured every half an hour.

One hour after the start, both people drank a solution containing 50 g of glucose.

The graph shows the result.

(i) By how much did the blood glucose concentration in person B rise after drinking the glucose drink?
(i) A doctor suggests that person A has diabetes.

Give two pieces of evidence from the graph to support this suggestion.

1. _________________________________

 __

2. _________________________________
 __
 __

(ii) Give one reason for the fall in blood glucose concentration in person B, shown in the graph.

Q15.

Amylase is an enzyme that digests starch.

A student investigated the effect of pH on the activity of amylase.

This is the method used.

1. Mix amylase solution and starch suspension in a boiling tube.
2. Put the boiling tube into a water bath at 25 °C.
3. Remove a drop of the mixture every 30 seconds and test it for the presence of starch.
4. Repeat the investigation at different pH values.

The table below shows the students’ results.

<table>
<thead>
<tr>
<th>pH</th>
<th>Time when no starch was detected in minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0</td>
<td>7.0</td>
</tr>
<tr>
<td>5.5</td>
<td>4.5</td>
</tr>
<tr>
<td>6.0</td>
<td>3.0</td>
</tr>
<tr>
<td>6.5</td>
<td>2.0</td>
</tr>
<tr>
<td>7.0</td>
<td>1.5</td>
</tr>
<tr>
<td>7.5</td>
<td>1.5</td>
</tr>
<tr>
<td>8.0</td>
<td>2.0</td>
</tr>
</tbody>
</table>
(a) The student concluded pH 7.25 was the optimum pH for the amylase enzyme. This is not a valid conclusion.
Suggest two reasons why.
1. ___

2. ___

(b) The student did another investigation.
This is the method used.
1. Put amylase solution and starch suspension into a boiling tube.
2. Make the pH 7.25.
3. Put the boiling tube into a water bath at 25 °C.
4. Measure the amount of sugar produced every 30 seconds.

The results are shown in the figure below.
Calculate the mean rate of sugar produced per minute during the first 5 minutes.

Mean rate = ________________ units per minute

(c) Iodine solution is added to a sample taken from the boiling tube after 10 minutes and 60 minutes.

Suggest what you would see in these samples.

After 10 minutes ___

After 60 minutes ___

(d) The scientist repeated the investigation at 37 °C.

Draw a line on the figure above to show the results the scientist would get.

(e) The same investigation was done at 65 °C.

How would this affect the results?

Explain why.

Q16.

Diabetes is a disease in which a person’s blood glucose concentration may rise.

Doctors give people drugs to treat diabetes.

The table shows some of the side effects on the body of four drugs, A, B, C and insulin, used to treat diabetes.
<table>
<thead>
<tr>
<th>Drug</th>
<th>Side effects on the body</th>
</tr>
</thead>
</table>
| A | Weight loss
Liver, kidney and heart damage
Feeling of sickness |
| B | Weight gain
Damage to some cells in pancreas |
| C | More water is kept in the body
Weight gain
Increased chance of bone breakage in women |
| Insulin | A little more water is kept in the body
Weight gain
Increased risk of lung damage |

(a) Which drug, A, B, C or insulin, is most likely to result in an increase in blood sugar concentration in some people?

Explain your answer.

Drug __

Explanation

(2)

(b) (i) Drugs A, B and C can be taken as tablets.

The chemicals in the tablets are absorbed into the blood from the digestive system.

Insulin is a protein.

Insulin cannot be taken as a tablet.

Why?

(1)

(ii) Other than using drugs, give two methods of treating diabetes.

1. __

2. __

(Total 5 marks)

Q17.

The diagram shows the structures involved in a reflex action.
(a) On the diagram, name the structures labelled W, X and Y.

(b) The control of blood sugar level is an example of an action controlled by hormones.

Give two ways in which a reflex action is different from an action controlled by hormones.

1. ___

2. ___

Q18.
(a) List A gives the names of three stages in trialling a new drug.

List B gives information about the three stages.

Draw a line from each stage in List A to the correct information in List B.

<table>
<thead>
<tr>
<th>List A Stage</th>
<th>List B Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tests on humans including a placebo</td>
<td>Used to find if the drug is toxic</td>
</tr>
<tr>
<td>The first stage in the clinical trials</td>
<td></td>
</tr>
</tbody>
</table>
Tests on humans using very small quantities of the drug

Used to find the optimum dose of the drug

Tests on animals

Used to prove that the drug is effective on humans

(b) Read the passage.

Daily coffee dose delays development of Alzheimer’s in humans.

Alzheimer’s is a brain disease that causes memory loss in elderly people. Scientists studied 56 mice that had been genetically engineered to develop Alzheimer’s.

Before treatment all the mice did badly in memory tests.

Half the mice were given a daily dose of caffeine in their drinking water. The dose was equivalent to the amount of caffeine in six cups of coffee for a human.

The other mice were given ordinary water.

After two months, the caffeine-drinking mice did better in memory tests than the mice drinking ordinary water.

The headline for the passage is not justified.

Explain why as fully as possible.
Q19.

(a) Control systems help to keep conditions in the human body relatively constant.

What is the general name for the processes that keep body conditions relatively constant?

Draw a ring around the correct answer.

- eutrophication
- homeostasis
- hydrotropism

(b) The concentration of glucose in the blood is controlled by hormones.

Use the correct answer from the box to complete each sentence.

- glucagon
- glycerol
- glycogen
- kidney
- liver
- pancreas

When the blood glucose concentration increases, an organ called

the ______________________ releases the hormone insulin.

Insulin causes glucose to move from the blood into the cells of the muscles

and the ______________________ .

Inside these organs, the glucose is changed into a carbohydrate called

______________________, which can be stored.

When the blood glucose concentration falls, another hormone is released,

which causes the storage carbohydrate to break down into glucose again.

This hormone is called ______________________.

(c) A person with Type 1 diabetes does not make enough insulin.

The person needs to test their blood at intervals throughout the day.

If the concentration of glucose in their blood is too high, the diabetic person needs to inject insulin.

(i) Insulin is a protein.

It must be injected and cannot be taken by mouth.

Explain why.
(ii) Apart from injecting insulin, give one other way that a diabetic person could help to control the concentration of glucose in their blood.

(d) Pet dogs have been trained to detect if the concentration of glucose in the blood of their diabetic owners is outside the normal healthy range. These dogs are called ‘medical response dogs’. The dogs respond in different ways. They may bark, jump up, or stare at their owners. They may even fetch a blood-testing kit.

(i) Suggest what stimulus the dogs might be responding to when they behave like this.

(ii) Table 1 shows how the concentration of glucose varied in blood samples from five diabetic people. Measurements were made both before and after getting a medical response dog.

<table>
<thead>
<tr>
<th>Number of blood samples measured</th>
<th>Low glucose</th>
<th>Within normal range of glucose</th>
<th>High glucose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before getting a dog</td>
<td>1704</td>
<td>32.6</td>
<td>54.8</td>
</tr>
<tr>
<td>After getting a dog</td>
<td>1724</td>
<td>18.6</td>
<td>61.6</td>
</tr>
</tbody>
</table>

A survey was made of the effect of a medical response dog on the lives of 16 diabetic people.

Table 2 shows how well these diabetic people agreed with each statement in the survey.
<table>
<thead>
<tr>
<th>survey</th>
<th>agree</th>
<th>agree</th>
<th>agree nor disagree</th>
<th>disagree</th>
<th>disagree</th>
</tr>
</thead>
<tbody>
<tr>
<td>I am more independent since getting my dog.</td>
<td>12</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>There are disadvantages to having a medical response dog.</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>I trust my dog to alert me when my sugar levels are low.</td>
<td>11</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>I trust my dog to alert me when my sugar levels are high.</td>
<td>6</td>
<td>7</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Evaluate how useful medical response dogs are for warning diabetic people that the concentration of glucose in their blood is outside the normal range.

Use information from Tables 1 and 2.

(e) Table 3 shows the concentrations of some substances in the urine of a non-diabetic person and in the urine of a diabetic person.

<table>
<thead>
<tr>
<th>Table 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substance</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>Protein</td>
</tr>
</tbody>
</table>

(5)
<table>
<thead>
<tr>
<th>Glucose</th>
<th>0</th>
<th>2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urea</td>
<td>20.0</td>
<td>19.5</td>
</tr>
<tr>
<td>Sodium ions</td>
<td>6.0</td>
<td>5.8</td>
</tr>
</tbody>
</table>

Compare the results for the non-diabetic person and the diabetic person. Give reasons for any differences.

Use your knowledge of how the kidney works.

(5)
(Total 19 marks)

Q20.
Two people did the same amount of gentle exercise on an exercise cycle. One person had a muscle disease and the other had healthy muscles.

The graph shows the effect of the exercise on the heart rates of these two people.
(a) Describe three ways in which the results for the person with the muscle disease are different from the results for the healthy person.

To gain full marks in this question you need to include data from the graph in your answer.

1. ___

2. ___
 __
 __

3. ___

(b) The blood transports glucose to the muscles at a faster rate during exercise than when a person is at rest.

 (i) Name one other substance that the blood transports to the muscles at a faster rate during exercise.

 (ii) People with the muscle disease are not able to store glycogen in their muscles.

 The results shown in the graph for the person with the muscle disease are different from the results for the healthy person.

 Suggest an explanation for the difference in the results.

Q21. This question is about the nervous system.

(a) Describe the function of receptors in the skin.

(b) A response is caused when information in the nervous system reaches an effector.

(i) There are two different types of effector.

Complete the table to show:

- the two different types of effector
- the response each type of effector makes.

<table>
<thead>
<tr>
<th>Type of effector</th>
<th>Response the effector makes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
(ii) Some effectors help to control body temperature.

Give one reason why it is important to control body temperature.

__

__

(1)

(Total 7 marks)

Q22.

The diagram shows the position of two glands, A and B, in a woman.

(a) (i) Name glands A and B.

A __

B __

(ii) Gland A produces the hormone Follicle Stimulating Hormone (FSH).

FSH controls changes in gland B.

How does FSH move from gland A to gland B?

__

(1)

(b) (i) A woman is not able to become pregnant. The woman does not produce mature eggs. The woman decides to have In Vitro Fertilisation (IVF) treatment.

Which two hormones will help the woman produce and release mature eggs?

Tick (✓) one box.
(ii) Giving these hormones to the woman helps her to produce several mature eggs. Doctors collect the mature eggs from the woman in an operation.

Describe how the mature eggs are used in IVF treatment so that the woman may become pregnant.

__

__

__

__

__

(3)

(iii) IVF clinics have been set a target to reduce multiple births.

At least 76% of IVF treatments should result in single babies and a maximum of 24% of treatments should result in multiple births.

Suggest one reason why the clinics have been set this target to reduce multiple births.

__

__

__

__

(c) Two clinics, R and S, used IVF treatment on women in 2007. Doctors at each clinic used the results of the treatments to predict the success rate of treatments in 2008.

The table shows the information.

<table>
<thead>
<tr>
<th></th>
<th>Total number of IVF treatments in 2007</th>
<th>Number of IVF treatments resulting in pregnancy in 2007</th>
<th>Predicted percentage success rate in 2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinic R</td>
<td>1004</td>
<td>200</td>
<td>18–23</td>
</tr>
</tbody>
</table>
Clinic S

| 98 | 20 | 3–56 |

(i) Compare the success rates of the two clinics in 2007.

(ii) The range of the predicted success rate in 2008 for clinic R is much smaller than the range of the predicted success rate for clinic S.

Suggest why.

Q23.

One factor that may affect body mass is *metabolic rate*.

(a) (i) What is meant by *metabolic rate*?

(ii) Metabolic rate is affected by the amount of activity a person does.

Give two other factors that may affect a person's metabolic rate.

1. __

2. __

(b) Predicted early death is the number of years that a person will die before the mean age of death for the whole population. The predicted early death of a person is affected by their body mass.

Scientists have calculated the effect of body mass on predicted early death.

The graph shows the results of the scientists' calculations.
Ideal body mass

The number of times above or below ideal body mass is given by the equation:

\[
\frac{\text{Actual body mass}}{\text{Ideal body mass}}
\]

In the UK the mean age of death for women is 82.

A woman has a body mass of 70 kg. The woman's ideal body mass is 56 kg.

(i) Use the information from the graph to predict the age of this woman when she dies.

Age at death = ___________ years

(ii) The woman could live longer by changing her lifestyle.

Give two changes she should make.

1. __

2. ___

(Total 7 marks)
Penguins live mainly in the Antarctic. Penguins eat mainly fish. **Photograph 1** shows a penguin swimming underwater.

Photograph 1

(a) Use information from **Photograph 1** to suggest **three** ways the penguin is adapted for catching fish.

1. __

2. ___

3. ___

 (3)

(b) The Antarctic winter is very cold. In the winter some species of penguin huddle together as shown in **Photograph 2**.

Photograph 2

Suggest how the behaviour shown in **Photograph 2** helps the penguins to survive the Antarctic winter.

(c) A student did an investigation to model the behaviour of the penguins shown in Photograph 2.

The diagram shows the apparatus the student used.

The student:

• held seven similar test tubes together with elastic bands as shown in the diagram
• stood a similar eighth tube in a test tube rack
• filled each of the eight tubes with hot water to the same level
• measured the temperature of the water in tubes A, B and C every 2 minutes for 20 minutes.

The table shows the student’s results.

<table>
<thead>
<tr>
<th>Time in Minutes</th>
<th>Temperature in °C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tube A</td>
</tr>
<tr>
<td>0</td>
<td>65</td>
</tr>
<tr>
<td>2</td>
<td>65</td>
</tr>
<tr>
<td>4</td>
<td>65</td>
</tr>
<tr>
<td>6</td>
<td>64</td>
</tr>
<tr>
<td>8</td>
<td>64</td>
</tr>
<tr>
<td>10</td>
<td>64</td>
</tr>
<tr>
<td>12</td>
<td>63</td>
</tr>
</tbody>
</table>
(i) Give two variables that were controlled in the investigation.

1. __
2. __

(ii) Describe the patterns the data shows.

__
__
__
__

(iii) How far does the data from the model support the suggestion you made in part (b)?

__
__
__
__

(d) Describe how blood vessels help control human body temperature.

(e) Penguins control their body temperature in similar ways to humans. Scientists investigated changes in body temperature of penguins when the penguins
were diving to catch fish.

(i) **Graph 1** shows the relationship between the temperature of the muscles moving a penguin's wings and diving.

The shaded areas show when the penguin was diving.

Suggest an explanation for the changes in temperature inside the muscles moving the penguin’s wings.

(ii) **Graph 2** shows the relationship between the temperature inside a penguin’s foot and diving.

The shaded areas show when the penguin was diving.
Suggest an explanation for the changes in temperature inside the penguin’s foot as it dives.

__
__
__
__
__
__
__

Q25.

The rate of chemical reactions can be changed by changing the conditions.

(a) Methane burns in oxygen to produce carbon dioxide and water.

The activation energy for the reaction is 2648 kJ / mol.

The reaction gives out 818 kJ / mol of energy.

The figure below shows the reaction profile for this reaction.

Complete the reaction profile.

Draw arrows to represent:

• the activation energy
(b) What percentage of the activation energy is the energy given out?

(1)

(c) Calcium carbonate decomposes when it is heated:

The decomposition of calcium carbonate is an endothermic reaction.

How would the reaction profile for decomposition of calcium carbonate be different from the reaction profile of methane burning in oxygen?

(1)

(d) Catalysts are used in chemical reactions in industry.

Give **two** properties of catalysts.

For each property, explain why it makes the catalyst useful in industry.

(4)

(e) Enzymes are biological catalysts.
What type of molecule is an enzyme?
Tick one box.

- Carbohydrate
- Hydrocarbon
- Lipid
- Protein

(1)

(f) If enzymes are denatured they stop working.

Give two ways an enzyme can be denatured.

1. ___
2. ___

(2)

(g) An enzyme called lactase catalyses the reaction that breaks down lactose to smaller molecules.

One model used to explain how enzymes affect reactions is called the lock and key model.

Use the lock and key model to explain why lactase cannot be used to speed up all chemical reactions.

(3)

(Total 16 marks)

Q26.

The nervous system allows humans to respond to their surroundings.

The figure below shows two nerve pathways.

Nerve pathway A Nerve pathway B
(a) Nerve pathway A is 92 cm long.

A nerve impulse travels along pathway A at 76.2 m/s.

Calculate how long it takes for the nerve impulse to travel the length of the pathway.

Use the equation:

\[
\text{distance} = \text{speed} \times \text{time}
\]

\[
92 \, \text{cm} = 76.2 \, \text{m/s} \times \text{time}
\]

Time = \(\frac{92 \, \text{cm}}{76.2 \, \text{m/s}} \) = \(\frac{92 \, \text{m}}{76.2 \, \text{m/s}} \) = 1.2 \, \text{s}

(b) Nerve pathways A and B are the same length.

The nerve impulse takes longer to travel along pathway A than along pathway B.

Use the figure above to explain why.

(c) Two students compare their reactions using a ruler.

This is the method used.

1. Student A sits with his elbow on a table top.
2. Student B holds the ruler so the bottom of the ruler is level with the top of student A’s thumb.
3. Student B drops the ruler.
4. Student **A** catches the ruler.

5. Record the drop distance.

6. Repeat steps 1 to 5 four more times.

7. Repeat the whole experiment with student **A** dropping the ruler and student **B** catching it.

Both students are right-handed.

Student **A** uses his right hand to catch the ruler.

Student **B** uses her left hand to catch the ruler.

The table below shows the students’ results.

<table>
<thead>
<tr>
<th>Student</th>
<th>Drop distance in mm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Test 1</td>
</tr>
<tr>
<td>Student A – right hand</td>
<td>203</td>
</tr>
<tr>
<td>Student B – left hand</td>
<td>230</td>
</tr>
</tbody>
</table>

What is the range of student **A**’s results?

(d) The students are testing the hypothesis:

The drop distance of the ruler is smaller when a right-handed person uses their right hand to catch the ruler.

The students’ results in the table above are not a good test of the hypothesis.

Suggest what the students should have done to test the hypothesis.
(e) Student A’s mean reaction time was 0.19 s.

Mean reaction time can be calculated using the equation:

\[
\text{Mean reaction time} = \sqrt{\frac{2 \times \text{mean drop distance in m}}{9.8 \text{ m/s}^2}}
\]

Calculate the mean reaction time for Student B.

Give your answer to two significant figures.

Student B’s results are repeated here to help you answer the question.

<table>
<thead>
<tr>
<th>Drop distance in mm</th>
<th>Test 1</th>
<th>Test 2</th>
<th>Test 3</th>
<th>Test 4</th>
<th>Test 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student B – left hand</td>
<td>230</td>
<td>211</td>
<td>279</td>
<td>215</td>
<td>264</td>
</tr>
</tbody>
</table>

Mean reaction time = ____________ s

Q27.

This question is about hormones.

(a) (i) Hormones carry messages.

What type of messenger is a hormone?

Draw a ring around the correct answer.

chemical electrical environmental

(ii) Which part of the brain secretes hormones?

Draw a ring around the correct answer.
(b) **Figure 1** shows the level of a pregnancy hormone over a 40-week pregnancy. This hormone can be detected in a pregnancy test.

Figure 1

A woman takes a pregnancy test.

In which week of pregnancy is the test most likely to give a positive result?

Use information from **Figure 1**.

Write the correct answer in the box.

(1)

(c) **Figure 2** shows the levels of three other hormones during pregnancy.

The baby is usually born at about 40 weeks.

Figure 2
Q28.

The human body is organised to carry out many different functions.

(a) Use words from the box to complete Figure 1 by putting the parts of the body in order of size from smallest to largest.

The smallest one has been done for you.

(i) Describe the patterns in the levels of oestrogen and progesterone from 0 to 36 weeks.

(ii) Which hormone is likely to stimulate contractions of the uterus (womb) when the baby is born?

Use information from Figure 2 to give a reason for your answer.

(4)

(2)

(Total 9 marks)
(b) The stomach is made of different types of tissue.

Draw one line from each type of stomach tissue to the correct description.

- Epithelial tissue: Covers the outside and the inside of the stomach
- Glandular tissue: Produces digestive juices
- Muscular tissue: Coordinates nerve impulses
- Allows food to be churned around the stomach

(c) Animals can react to their surroundings because they have nervous systems.

A student investigated the behaviour of small animals called woodlice.

The student set up the investigation as shown in Figure 2.

- The student covered one half of a Petri dish with black paper to make that side of the Petri dish dark.
- The other side had no cover.
- The student put five woodlice into each side of the dish and then put the clear Petri dish lid back on the dish.
After 30 minutes, all the woodlice had moved to the dark side of the Petri dish.

(i) In this investigation, what is the stimulus that the woodlice responded to?

(ii) In this investigation, what is the response that the woodlice made?

(iii) The student concluded that woodlice prefer dark conditions.

Give two ways in which the student could improve the investigation to be sure that his conclusion was correct.

1. __
 __

2. __
 __

Q29.

Amylase catalyses the breakdown of starch into sugars.

A student investigated the effect of amylase on the reaction at different temperatures.

Figure 1 shows the apparatus the student used.
This is the method used.

1. Put starch suspension into a test tube.
2. Add amylase solution.
3. Put the test tube in a beaker of water at 15 °C.
4. Remove a small sample of the mixture every 30 seconds and put in a spotting tile.
5. Test the sample for starch.
6. Time how long it takes to break down all of the starch in the mixture.
7. Repeat steps 1–5 at 20 °C, 25 °C and 30 °C.
8. Repeat for each temperature twice more.

The table below shows the student’s results.

<table>
<thead>
<tr>
<th>Temperature in °C</th>
<th>Test 1</th>
<th>Test 2</th>
<th>Test 3</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>6.1</td>
<td>9.4</td>
<td>10.0</td>
<td>8.5</td>
</tr>
<tr>
<td>20</td>
<td>4.8</td>
<td>5.0</td>
<td>4.6</td>
<td>4.8</td>
</tr>
<tr>
<td>25</td>
<td>3.0</td>
<td>2.5</td>
<td>3.0</td>
<td>3.2</td>
</tr>
<tr>
<td>30</td>
<td>1.5</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
</tbody>
</table>
(a) One of the results in the table above is anomalous.
Draw a ring around the anomalous result. (1)

(b) Calculate the mean for 30 °C.

(1)

(c) **Figure 2** shows a graph of the student’s results.

![Figure 2](image)

Use the graph to predict how long it would take to break down all of the starch at 10 °C.

\[\text{Time} = \text{______________ minutes} \] (1)

(d) The student tested samples of the mixture for starch every 30 seconds.
In each test she added one drop of iodine to the sample in the spotting tile.
Predict the colour of the samples from the 20 °C test at 4.0 minutes and 7.0 minutes.

\begin{align*}
\text{Colour at 4.0 minutes} & \quad \text{__} \\
\text{Colour at 7.0 minutes} & \quad \text{__} \\
\end{align*}

(2)

(e) The student did a fourth test at 30 °C.
In this test the starch did not break down, even after 45 minutes.

Why did the amylase not break down the starch in this test?

Tick one box.

The amylase solution and the starch suspension were mixed before the start of the experiment.

The amylase solution had been prepared with water at 95 °C.

The amylase solution had been prepared with water at 20 °C.

The amylase solution had been stored in the fridge.

(1)

(f) The student made the following conclusion about the optimum temperature for amylase to work at.

‘Amylase works fastest at 40 °C’

Her teacher said that this is not a valid conclusion from her results.

Describe how the student could change her method to give results that would improve the validity of her conclusion.

(6)

(Total 12 marks)

Q30.

Neurones pass information around the body.

(a) Why are reflex reactions important?
(b) Caffeine is a drug found in coffee.

After a person drinks coffee information passes through neurones in the nervous system more quickly.

Suggest a hypothesis for the effect of caffeine concentration on reaction time.

(c) Two students investigated the effect of caffeine concentration on reaction time.

This is the method used.

1. Student A drinks a cup of coffee.
2. Student B holds a ruler above Student A’s hand.
3. Student B drops the ruler.
4. Student A catches the ruler as quickly as she can.
5. The distance the ruler falls is recorded.

Suggest how this method could be improved to produce valid results.

Q31.

Glycogen is stored in the muscles.

Scientists investigated changes in the amount of glycogen stored in the muscles of two 20-year-old male athletes, A and B. Athlete A ate a high-carbohydrate diet. Athlete B ate a low-carbohydrate diet.
Each athlete did one 2-hour training session each day.

The graph shows the results for the first 3 days.

(a) (i) Give **three** variables that the scientists controlled in this investigation.

__
__
__
__
__

(ii) Suggest **two** variables that would be difficult to control in this investigation.

__
__
__
__

(iii) Describe **one** way in which the results of Athlete B were different from the results of Athlete A.

__
__

(b) Both athletes were training to run a marathon.

Which athlete, A or B, would be more likely to complete the marathon?

Use information from the graph to explain your answer.
Mark schemes

Q1.
(a) B

no mark for ÉBÉ, alone
large(r) surface / area or large(r) membrane
accept reference to microvilli
accept reasonable descriptions of the surface
do not accept wall / cell wall
ignore villi / hairs / cilia

1

(b) (i) any one from:
• insulin / hormone
 if named hormone / enzyme must be correct for pancreas
• enzyme / named enzyme

1

(ii) many ribosomes
(ribosomes) produce protein
accept insulin / hormone / enzyme named is (made of) protein

or
allow many mitochondria (1)
provide energy to build protein or to make protein (1)
accept ATP for energy

1

[4]

Q2.
(a) (i) pancreas

allow phonetic spelling

1

(ii) glucose into cells / liver / muscles

allow any named organ / cell
allow turned into / stored as glycogen
but
do not allow hybrid spellings for glycogen
allow increases respiration
allow stored as / turned into fat

1

(b) (i) reference to “98.6% of all people who used Diacure reported an improvement in their condition”.

allow claim 1 / 1 / the first one
(ii) (only) 30 patients or not enough / not many patients
 allow only one trial or only done once or not repeated
 ignore bias

(iii) little effect / difference
 allow no effect
 allow only drops by 4 (±1)

suggest drug is not effective (in long term)
 allow wouldn’t persuade people to take it

(iv) avoid bias / owtte

 eg company could change / ignore results / might lie
 ignore fair / accurate / reliable / valid

Q3.

(a) (i) endocrine glands or endocrine system
 allow a specific named gland

 (ii) (dissolved) in the blood(stream) or plasma

(b) (i) pancreas or islets of Langerhans

 (ii) (it or insulin) lowers blood sugar level [1]

 (by) (speeding up or increasing)
 conversion of glucose to glycogen [1]

 in the liver [1]

 (and) speeding up or increasing uptake of glucose by body cells [1]

Q4.

(i) liver

(ii) liver or B stores glycogen
 or pancreas or D makes insulin

 clear description of link
Q5.

(a) label drawn to the hand

may be labelled as ‘a’
accept the receptor identified as the hand

(b) label drawn to the muscle

may be labelled as ‘b’
accept the effector identified as the muscle

(c) (i) sharp point or heat

accept specific examples such as pain, bee sting, cut, burning

do not accept touch by itself

(ii) move the hand (or arm) away from stimulus or muscle in the arm contracts

do not credit reference to impulse reaching brain unless it is clear that this is in addition to the reflex act

do not credit ‘reflex action’ already given

(d) an arrow on the sensory fibre from hand to spine

award one mark for both arrows in the correct direction and

• note the arrows may be drawn separately from the printed neurone

an arrow on the motor fibre from spine to muscle

• do not credit if the impulse travels to the muscle via the brain but a ‘one way’ journey to the brain will be neutral

Q6.

(a) oxygen; carbon dioxide; water

allow symbols

each for 1 mark

(b) graph with reasonable vertical scales; accurate plotting of all points (ignore lines) and labelling lines histogram – must be coded

gains 3 marks

(c) 6 of:
during exercise the level of CO₂ (in the blood) rises; increased breathing to remove excess CO₂; increased oxygen supply to muscles; or increased breathing takes in more O₂ or increased heart rate takes more O₂ to muscles; increased supply of sugar to muscles; increased respiration rate; enable faster rate of energy release; reference to lactic acid (allow even though not on syllabus)/O₂ debt; to avoid cramp; anaerobic reference; reference to removal of 'heat';

(d) high carbon dioxide concentration; brain/central nervous system; heart muscles (both)

Q7.
(a) 345 to 350
 ignore working or lack of working
 use of 355 to 360 and 10 for 1 mark

(b) any two from:
 more sweating (at 37.6 °C)
 'more' at least once in the first 2 points
 more water loss or dehydration occurs
 do not accept prevents dehydration only
 blood becomes (more) concentrated / (more) salty or need to replace water
 stimulation of the hypothalamus

(c) any three from:
 evaporation
 of water
 do not accept just water loss unqualified
 cools skin or uses heat from skin
 cools blood / heat from blood (passing through skin)
 related to sweating
 cooling the blood
 ignore vasodilation

Q8.
(a) (i) any one from:
• chemical messenger
• chemical / substance released in one part to have effect elsewhere in body
• chemical / substance which affects another / target organ / tissues / cells
 allow chemical from endocrine gland

(ii) in blood / circulatory system / any named part including plasma
 extra wrong answer would cancel example
 not red blood cells

(b) Quality of written communication:
correct use of at least two relevant scientific terms spelt phonetically
 e.g. pregnancy, ovulation, FSH, oestrogen, progesterone, ovary, follicle, circulation, thrombosis, feminisation, sperm count, STD
 Q ✓ or Q ✗

 any three from:

 Oral contraceptives:

 (benefit)
 • prevent (unwanted) pregnancy or prevent egg release
 • regulate menstrual cycle / periods

 (problems)
 • prolonged use may prevent later ovulation / cause infertility
 • named side-effect on female body
 e.g. circulatory problems / weight gain / nausea / headache / breast cancer / mood swings
 • increased promiscuity / increase in STD's / STI's
 • named side-effect on environment
 e.g. feminisation of fish or lowered sperm count in human males

 Fertility drugs:

 (benefit)
 • can enable woman to have children or to become pregnant or stimulates egg release

 (problem)
 • multiple births

 for full marks must score at least one re contraceptives and
 at least one re fertility drugs
 if unclear which type of hormone maximum 2 marks from 3
Q9.

(a) any two from:

- amylase / carbohydrase
- protease
 allow trypsin
- lipase

(b) (i) high / above normal blood sugar or cannot control blood sugar
 allow other symptoms
 eg frequent / plentiful urination or sugar in urine or thirst or weight loss or coma
 ignore consequential effects eg blood pressure / circulation / glaucoma / tiredness

(ii) any one from:

- small / regular meals
- low sugar (meals) or low GI / GL or carbohydrates as starch
 allow high fibre
 ignore reference to low carbohydrate

(iii) any one from:

- keep constant (blood) sugar or prevent high (blood) sugar or reduces surge / rush of sugar into blood
- reduce the need for insulin

(iv) (take) insulin
 allow pancreas transplant

(c) protein / hormone / enzyme synthesis or synthesis of named example or combine amino acids

Q10.

(a) (i) 6

(ii) 4

(b) (i) pancreas
ignore islets of langerhans

(ii) ‘X’ anywhere between >1 and ≤2 hours

anywhere in that column

(c) any four from:

water movement
do not accept solution

out of cells
dilute to concentrated solution

accept reference to correct gradient -
high to low or high to low ‘water concentration’
must be unambiguous – i.e. not ‘high to low concentration’
accept low to high concentration

reference to partially / selectively
permeable membranes or described
cells shrink / get smaller

allow crenated
ignore plasmolysed / flaccid / floppy
etc

Q11.

(a) (i) receptor

allow named receptor eg light receptor
ignore sensory neurone

allow sense organ / named sensory organ eg skin / eye

(ii) sensory (neurone)

allow afferent

(iii) motor (neurone)

allow efferent

(iv) effector / muscle / gland / named

(b) any two from:

• impulse / information passes from one neurone to another
 or impulse / information passes across gap

• chemical / transmitter involved

• diffusion (across gap)
(c) brain / person not aware of pain / stimulus / can't feel
 allow brain/ person doesn't know / realise / unable to coordinate
 ignore reflex
 ignore information
 possibility of (permanent / serious) damage / eg burning
 ignore danger

Q12.
(a) pancreas
 allow phonetic spelling
 1
(b) 4(.0) to 7.2 or 7.2 to 4(.0)
 1
(c) 13 – 7 = 6
 working shows 6 = 1 mark
 1
 6/2 = 3 units
 accept the correct answer to the calculation, 3 units, for 2 marks, irrespective of working
 1
 increase (dose)
 accept indication of increase, eg extra / more / + could be in working lines
 1

Q13.
(a) (i) any one from:
 • chemical messenger / message
 allow substance / material which is a messenger
 • chemical / substance produced by a gland
 allow material produced by a gland
 • chemical / substance transported to / acting on a target organ
 • chemical / substance that controls body functions
 1
 (ii) gland / named endocrine gland
 brain alone is insufficient
 allow phonetic spelling
 1
(iii) in blood / plasma or circulatory system or bloodstream
 accept blood vessels / named
 do not accept blood cells / named

 (b) each hormone must be linked to correct action
 apply list principle
 ignore the gland producing hormone

 FSH stimulates oestrogen (production) / egg maturation / egg ripening
 ignore production / development of egg

 oestrogen inhibits FSH
 allow oestrogen stimulates LH / build up of uterine lining

 LH stimulates egg / ovum release / ovulation
 accept LH inhibits oestrogen
 accept LH controls / stimulates
growth of corpus luteum
 ignore production of egg

Q14.
(a) (i) insulin
 accept glucagon (correct spelling only)

(ii) pancreas
 accept phonetic spelling
 allow pancrease

(b) (i) 11(.0)
 accept in range 10.5-11 (.0)

(ii) any two from:
 ignore numbers unless comparative

 • high(er) concentration (of blood glucose) (anywhere / any time)
 accept 115 not 88
 139 not 99

 • large(r) increase (in concentration after the drink)
 accept increase by 24 not 11 / their b(i)

 • fast(er) / steep(er) rise
 accept it takes 3 hours not 1 ¼ hours to get back to original
 level
 accept it takes a long time to get back to normal

 • slow(er) fall
(iii) any one from:

- insulin present / produced
 * accept glucagon not produced

- (used in) respiration
 * allow exercise

- taken into cells
 * allow converted to glycogen
 * allow taken into liver (cells) / muscle (cells)
 * allow produce / make energy

Q15.

(a) any two from:

- same result at pH 7 and 7.5
 * or
 * could be any pH between 7 and 7.5
 * or
 * not tested at pH 7.25
 * or
 * need to test at smaller pH intervals (between 7 and 7.5)

- accuracy of result only to nearest 0.5 minutes

- no repeats

- difficult to determine end point (colour)

(b) 2.7 / 5

0.54 (units per minute)

* allow 0.52 with no working shown for 2 marks

* allow 1 mark for 0.52 or 0.56

(c) (after 10 minutes) solution goes black

(d) steeper curve

levels off at 11.8 units and before 45 minutes

(e) no / little sugar produced

* allow a correct description of what the graph would look like
(because at 65 °C) the enzyme will be denatured
 allow (because) the enzyme’s shape will be changed
 or
 (because) the active site is damaged

(so) will no longer fit the starch
 or
 (so) will not be able to catalyse the reaction

Q16.
 (a) B

 less / no insulin (produced) or insulin produced in pancreas
 allow pancreas can’t monitor (blood) sugar (level)
 ignore pancreas can’t control (blood) sugar (level)
 allow increased glucagon production
 allow A as liver stores less glucose / sugar for 2 marks only

 (b) (i) (it / protein / insulin) digested / broken down
 if ref to specific enzyme must be correct (protease / pepsin)
 ignore denatured
 do not accept digested in mouth / other incorrect organs

 (ii) any two from:
 ignore injections

 • (attention to) diet
 accept examples, eg eat less sugar(y food) or eat small regular meals
 allow eat less carbohydrate / control diet
 ignore cholesterol or balanced / healthy diet

 • exercise
 ignore keep fit / healthy

 • (pancreas) transplant / stem cells / genetic engineering

Q17.
 (a) Y - spinal cord / central nervous system / CNS
 do not accept spine
 ignore nerve / nervous system / coordinator
 ignore grey / white matter

 W - receptor / nerve ending
 ignore sensory / neurone / stimulus
X - effector / muscle
allow gland

(b) any two from: eg
accept reverse argument for each marking point

• reflex action quicker
• effect of reflex action over shorter period
• hormone involves blood system and reflex involves neurones / nerve cells
 ignore nervous system / nerves
• reflex involves impulses and hormone involves chemicals
• reflex action affects only one part of the body
 ignore involves brain
 ignore outside / inside stimuli

Q18.
(a)

A

Tests including a placebo

Tests using very small ...

Tests on animals

B

Used to find whether the drug is toxic

The first stage in the clinical trials of the drug

Used to find the optimum dose of the drug

Used to prove that the drug is effective on humans

1 mark for each correct line
mark each line from left hand box
(b) any three from:

Students have been informed that the headline is not justified

• reference to reliability, eg only a small number of mice tested or trial too short or investigation not repeated

• reference to control, eg mice given caffeine not coffee or 6 cups (equivalence) is more than 1 dose

• (and) the effect on mice might not be same as on humans allow only tested on mice

• (also) text suggests that the treatment improves memory loss (rather than delays it)
 accept text suggests disease cured

or mice already have memory loss or experiment only showed improvement in memory
 or does not show delays Alzheimer’s
 or experiment not done on old mice
 allow reference to the fact that mice engineered to have it

Q19.

(a) homeostasis

(b) in sequence:

pancreas

liver

glycogen
 correct spelling only

glucagon
 correct spelling only

(c) (i) broken down / digested

 further detail eg into amino acids / by enzymes / by proteases

(ii) diet / eating less sugar / less fat
 ignore balanced diet
 or
 ignore ‘dieting’ / slimming diet
exercise

accept pancreas transplant

(d)

(i) sensible suggestion

eg (owner’s) smell / sweating / change in owner’s behaviour / dizziness / tiredness

(ii) any five from:

allow 1 mark for justified conclusion

do not allow full marks unless at least 1 pro and 1 con.

Pro:

• % below normal decreases
• % in normal increases
• reliable / repeatable / valid data as large number of samples
do not allow accurate / precise
• patients express satisfaction.

Con:

• may not be reliable as blood glucose measurements for only 5 patients / survey of only 16 (dog owners)
• % above normal increases / dogs are less good at detecting high glucose.

(e) glucose in urine of diabetic (and not in the non-diabetic)

urea and Na+ ions are similar in each / slightly lower in diabetic

+ any three from:

• no protein in either urine sample because protein too large / does not pass through filter
• glucose passes through filter in kidney
 ignore glucose is reabsorbed
• non-diabetic: the / all glucose is reabsorbed / taken back into blood
• diabetic: (too much glucose so) cannot all be reabsorbed
• because diabetic has high concentration of glucose in blood
• urea and Na+ lower in diabetic because less water is reabsorbed (due to extra glucose in filtrate).

Q20.

(a) person with muscle disease:

allow reverse argument for healthy person

any three from:

NB all points are comparative except peak (point 3)

allow use of two approximate figures as a comparison

• higher resting rate or higher at start
• when exercise starts / then increases more / more rapidly
accept description eg rise …. fall

• peaks (then falls)
• levels off later than healthy person
• higher rate during exercise
 if no other marks awarded allow 1 mark for ‘it’s higher’
• greater range

(b) (i) oxygen
 accept adrenaline
 accept O₂
 do not accept O, O₂ or O²

(ii) cannot release sugar / glucose (from glycogen)
 or
 cannot store glucose / sugar (as glycogen)

 need to receive glucose / sugar (from elsewhere)
 ignore oxygen

 for energy / respiration / cannot store energy
 ignore aerobic / anaerobic

Q21.

(a) detect changes in surroundings or detect stimuli
 allow any named stimulus for skin

 convert information to impulse
 allow send impulse to sensory neurones / brain

(b) (i)

<table>
<thead>
<tr>
<th>muscle</th>
<th>contract(ion)</th>
</tr>
</thead>
<tbody>
<tr>
<td>gland</td>
<td>release / secrete / produce chemical / hormone / enzyme</td>
</tr>
</tbody>
</table>

1 mark for each effector
1 mark for each response
response must match type of effector (if given)
ignore examples
ignore relax(ation) / movement for contraction
do not allow expansion for muscles

(ii) any one from:

- (maintain temperature at which) enzymes work best
- so chemical reactions are fast(est)
- prevent damage to cells / enzymes
 allow prevent enzymes being denatured (by temperature being too high)

Q22.

(a) (i) A – pituitary

 allow hypothalamus

 B – ovary / ovaries

(ii) in blood (stream)
 accept in plasma
 ignore dissolved

(b) (i) FSH and Luteinising Hormone (LH)

(ii) fertilised
 OR
 reference to sperm

 form embryos / ball of cells or cell division

 (embryo) inserted into mother’s womb / uterus
 allow (fertilised egg) is inserted into mother’s womb / uterus

(iii) any one from:

- multiple births lead to low birth weight
- multiple births cause possible harm to mother / fetus / embryo / baby / miscarriages
 allow premature
 ignore reference to cost / ethics / population

(c) (i) any one from:

- almost identical
 allow S (slightly) more successful

- both approximately 20%
larger numbers (in clinic R) (in 2007)
allow only 98 (in S) (compared to 1004 (in R))

results likely to be more repeatable (in 2008)
allow more reliable
do not accept more reproducible / accurate / precise

Q23.
(a)
(i) rate of chemical reactions (in the body)

(ii) any two from:

- heredity / inheritance / genetics
- proportion of muscle to fat or (body) mass
 allow (body) weight / BMI
- age / growth rate
- gender
 accept hormone balance or environmental temperature
 ignore exercise / activity

(b)
(i) 77
 correct answer with or without working gains 2 marks
 allow 1 mark for 70 / 56 or 1.25 or 5

(ii) increase exercise
 accept a way of increasing exercise
 reduce food intake
 accept examples such as eat less fat / sugar
 allow go on a diet or take in fewer calories
 ignore lose weight
 ignore medical treatments such as gastric band / liposuction

Q24.
(a) any three from:

- streamlined shape enables it to swim quickly (to catch fish)
- wings (provide power) to move quickly (to catch fish)
 allow ‘flippers’
- wings used for steering
- white underside / dark top acts as camouflage (so prey less likely to see it)
- long / sharp beak to catch fish
(b) any three from:

- reduces (total) surface area of penguins exposed to wind / cold atmosphere
- reduced number of penguins exposed (to wind / cold)

 accept reference to movement in or out of the huddle
 accept outer ones insulate / act as barrier
- reducing heat loss
 allow reduced cooling
- ‘share' body warmth / heat

(c) (i) any two from:

- size of tubes
- volume of (hot) water
 accept amount of (hot) water
- left for same length of time
 allow measured at same time intervals
- starting temperature

(ii) any two from:

- tube alone (C) lost heat most (rapidly)
- tube B intermediate
- tube A least (rapidly)
 allow correct use of figures for all 3 tubes
 ignore just quoting final temperature

(iii) confirms suggestion

no mark awarded
accept correct answers referring to other suggestions in (b)

since (both outer and inner) tubes in bundle lost heat less rapidly (than 'stand − alone' tube)

comparison needed

penguins in a huddle lose less heat (than single ones)

accept ‘it is the same for penguins’

(d) if the core body temperature is too high

blood vessels supplying the skin (capillaries) dilate / widen

accept reference to arteries / arterioles but not veins / capillaries

do not accept references to movement of blood vessels
ignore enlarge / expand
reference to skin / surface required only once

so that more blood flows through the (capillaries) in skin / near surface

reference to ‘more’ needed at least once to gain 2 marks

and more heat is lost
if the core body temperature is too low

blood vessels supplying the skin (capillaries) constrict / narrow

allow full marks if ‘too low’ given first
if no other marks awarded, allow vasodilation when too warm
and vasoconstriction when too cold for 1 mark

(e) (i) wings move to provide movement for diving

allow muscles contract / work

energy (for movement) comes from respiration
do not allow produces / makes / creates energy
allow energy comes from / is supplied by / is released by respiration

respiration / muscle contraction also releases heat

allow produces heat

(ii) any three from:

• feet not / less used or no muscle contraction in feet

allow little energy / heat released through respiration in feet
do not allow veins / capillaries

• vessels supplying feet constrict / less blood to feet

• so temperature in feet cools / decreases

• more heat loss from large surface area or rapid flow of cold water over foot

Q25.

(a) products below reactants

correct energy profile

activation energy correctly labelled

energy given out correctly labelled

(b) 31 (%)

(c) the products would be above the reactants

(d) catalysts increase rate of reaction

1 mark for each property

1 mark for each explanation
so products formed in less time

or

catalysts lower activation energy

explanation must be linked correctly to the property to gain the mark

so lowers energy requirements

or

catalysts not used up in the reaction

so only an initial outlay needed

or

only a small amount of catalyst needed

so small initial cost

(max. 4)

(e) Protein

(f) high temperatures

extremes of pH

(g) lactase acts as the lock, lactose is the key (substrate)
lactase has an active site which will only fit lactose molecules

so lactase will not work with other molecules

[16]

Q26.

(a) \[0.92 = 76.2 \times \text{time}\]

time = \[0.92 \div 76.2\]

= 0.012

allow 0.012 with no working shown for 3 marks

(b) pathway B has two synapses

allow converse for pathway A

chemicals diffuse across each synapse

which slows down the impulse
(c) 140–203

(d) use the same person for each test

use left hand and right hand

use a bigger sample size or more people

allow take more readings with each person

(e) mean drop distance = \(\frac{230 + 211 + 279 + 215 + 264}{5} = 239.8 \) mm = 0.2398 m

\[
\text{mean reaction time} = \sqrt{\frac{2}{9.8} \times 0.2398}
\]

= 0.221

incorrect sig. figs max. 3 marks

allow 0.221 with no working shown for 4 marks

Q27.

(a) (i) chemical

(ii) pituitary gland

(b) 8

allow 9 or 10

(c) (i) any four from:

- progesterone starts being produced at 4 weeks / no progesterone before 4 weeks
- and then / from 4 weeks increases
- oestrogen at constant / low level (from 0) to 20 weeks
- and then / from 20 weeks increases
- from 20 – 36 weeks level of O rises more steeply than that of P
 or
- P is always higher than 0 from 6 to 36 weeks

if no other marks awarded, allow progesterone and oestrogen both increase / rise for 1 mark.

(ii) oxytocin

level of oxytocin increases just before birth
Q28.
(a) tissue → organ → organ system
 \textit{one right for 1 mark}
 \textit{three right for 2 marks}

(b) Epithelial tissue → covers the outside and the inside of the stomach
 \textit{more than one line from a tissue = no mark}
 Glandular tissue → produces digestive juices
 Muscular tissue → allows food to be churned around the stomach

(c) (i) light
 \textit{ignore dark}
 (ii) moving (to the dark)
 (iii) any \textbf{two} from:
 \begin{itemize}
 \item use more woodlice
 \item repeat the experiment
 \item run for a longer time
 \end{itemize}

Q29.
(a) 6.1 circled on table (15 °C, test 1)
(b) 1.8
 \textit{do not allow 1.83}
(c) 16 (minutes)
 \textit{correct number extrapolated from curve}
(d) 4.0 min – blue / black / purple
 7.0 min – yellow / orange / brown
(e) The amylase solution had been prepared with water at 95 °C
(f) Level 3 (5–6 marks):
 A clear and coherent method is described using logical steps and demonstrating a
good understanding of how to improve the validity of the method. The method would
lead to
the production of valid results that would give rise to a more valid conclusion.
Level 2 (3–4 marks):
The substantive content of a method is present and demonstrates reasonable understanding of how to improve the validity but may be missing some detail. The plan may not be in a completely logical sequence but leads towards the measurement of rate of the reaction.

Level 1 (1–2 marks):
Simple relevant statements made, which demonstrate limited understanding of how to improve the experimental method. The response lacks logical structure and would not lead to the production of valid results or a more precise optimum temperature.

0 marks:
No relevant content

Indicative content
- conduct at a greater range of temperatures
- use temperatures both above and below 40 °C
- use smaller temperature intervals to get a more accurate optimum (e.g., go up in 2 °C increments)
- take samples at smaller time intervals to get a more accurate result for ‘time taken’
- control the volume of starch used (e.g., 5 cm³)
- control the volume of the amylase solution (e.g., 1 cm³)
- control the temperature (e.g., using a water bath)
- heat the two solutions separately before mixing
- control the concentration of the starch solution
- control the concentration of the amylase solution

Q30.
(a) fast reaction to reduce / protect from harm
 allow named examples
 1

(b) higher caffeine concentration causes shorter reaction time.
 allow converse
 ignore ‘faster / slower reaction time’
 1

(c) Level 3 (5–6 marks):
A coherent method is described with relevant detail, which demonstrates a broad understanding of the relevant scientific techniques and procedures. The steps in the method are logically ordered. The method would lead to the collection of valid results.

Level 2 (3–4 marks):
The bulk of a method is described with mostly relevant detail, which demonstrates a reasonable understanding of the relevant techniques and procedures. The method may not be in a completely logical sequence and may be missing some detail.

Level 1 (1–2 marks):
Discrete relevant points are made which demonstrate some understanding of the relevant scientific techniques and procedures. They may lack a logical structure and
would not lead to the production of valid results.

0 marks:
No relevant content.

Indicative content
- use decaffeinated coffee as control
- control volume of coffee
- blind trial or do not tell students which coffee they are drinking
- left for standard time between drink and test
- at least 10 minutes
- control start position of ruler
- control other factors such as light in the room
- same person for different concentrations
- repeat for each caffeine concentration
- use a range of caffeine concentrations
- start with lowest concentration of caffeine
- use caffeine solution instead of coffee to control for other ingredients
- repeat investigation with more people and calculate means

Q31.
(a) (i) any three from:
 if diet given as answer = max 2
 - age (of athlete)
 - gender (of athlete)
 - starting concentration of glycogen
 - type / intensity of exercise
 - length of exercise period
 - number of training sessions
 if none of these points gained amount of exercise = 1 mark
 - time interval between exercise sessions
 - exercise at same time of day
 if last four points not awarded allow time (for exercise) for 1 mark
 ignore references to amount of energy
 ignore they are both athletes

(ii) any two from:
 - intensity of exercise
 - amount of exercise between sessions
 - starting concentration of glycogen
 - fitness / health
• metabolic rate / respiration rate
• amount / mass of muscle / physique
• aspects of diet qualified, eg amount of food eaten
do not accept amount of carbohydrate
if no other marks awarded allow height / mass / weight for 1 mark

(iii) (B has) less glycogen

he = B

or (B’s glycogen) fell more
accept use of approximate figures

or (B’s glycogen) built up less
allow other correct observations from graph eg A is lower at end of first session
ignore rate of fall

(b) athlete A (no mark)

to gain full marks ‘more’ must be given at least once

athlete A had more glycogen / B has less (only if A chosen to complete marathon)
accept converse argument for B

(glycogen / glucose) used in respiration
ignore anaerobic

(more) energy released / available in athlete A
allow ‘energy made’

and either energy used for movement / muscle action / to run
or
(extra) glycogen → (more) glucose