Write your name here

Mathematics AO3

Mathematical problem solving
Silver Test

Time: 45-60 minutes

You must have: Ruler graduated in centimetres and millimetres, protractor, pair of compasses, pen, HB pencil, eraser.

Instructions

- Use black ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- Calculators must not be used in questions marked with an asterisk (*).
- Diagrams are NOT accurately drawn, unless otherwise indicated.
- You must show all your working out with your answer clearly identified at the end of your solution.

Information

- This silver test is aimed at students targeting grades 5-6.
- This test has 8 questions. The total mark for this paper is 33 .
- The marks for each question are shown in brackets
- use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

1. Axel and Lethna are driving along a motorway.

They see a road sign.
The road sign shows the distance to Junction 8
It also shows the average time drivers take to get to Junction 8

```
To Junction 8
    30 miles
    26 minutes
```

The speed limit on the motorway is 70 miles per hour.
(a) If Axel and Lethna can drive 30 miles in 26 minutes, work out how far they can travel in 60 minutes.
miles

Lethna says
"We will have to drive faster than the speed limit to drive 30 miles in 26 minutes."
(b) Is Lethna right?

You must show how you get your answer.
2. The diagram shows a trapezium $A B C D$ and two identical semicircles.

The centre of each semicircle is on $D C$.
(a) Work out the area of the trapezium $A B C D$.
(b) Find the length of the radius of one of the semi-circles.
(c) Work out the area of the one of the semi-circles shown.

Give your answer correct to 3 significant figures.
\qquad
cm^{2}
(d) Thus work out the area of the shaded region.

Give your answer correct to 3 significant figures.
\qquad
cm^{2}
3. The diagram shows a tank in the shape of a cuboid.

It also shows a container in the shape of a cuboid.

The tank is full of oil.
The container is empty
35% of the oil from the tank is spilled.
The rest of the oil from the tank is put into the container.
(a) Work out the volume of the tank.
\qquad
cm^{3}
(b) Thus work out the volume of the oil put into the container.
\qquad
cm^{3}
(c) Work out the surface area of the floor of the container.
\qquad
cm^{2}
(d) Thus work out the height of the oil in the container. Give your answer to one decimal place.
*4. In a company, the ratio of the number of men to the number of women is $3: 2$
40% of the men are under the age of 25
10% of the women are under the age of 25
(a) Work out what fraction of the company are men.
(b) Thus work out what percentage of men under the age of 25 there are in the company.
(c) Work out what fraction the company are women.
(d) Thus work out what percentage of women under the age of 25 there are in the company.
\qquad
(e) What percentage of all the people in the company are under the age of 25 ?
\qquad
5. Katy invests $£ 2000$ in a savings account for 3 years.

The account pays compound interest at an annual rate of

$$
\begin{aligned}
& 2.5 \% \text { for the first year } \\
& x \% \text { for the second year } \\
& x \% \text { for the third year }
\end{aligned}
$$

There is a total amount of $£ 2124.46$ in the savings account at the end of 3 years.
(a) Work out the amount in the savings account at the end of the first year.
£.
(b) Write down an equation in x to show increase in the amount in the savings account after three years compared to the amount in the savings account after two years.
(c) Solve your equation for x and thus work out the rate of interest in the second year.
*6. Here is a parallelogram.

(a) Use your knowledge of parallelograms to identify two equal angles.
\qquad and \qquad
(b) Use your answer to part (a) to form and solve an equation to find the value of x.

$$
x=
$$

\qquad
(c) Use your knowledge of parallelograms to identify two angles which add up to 180°.
(d) Use your answer to part (c) to form an equation, substituting your value for x found in part (b).
\qquad $=$. \qquad
(e) Rearrange and solve your equation from part (d) to find the value of y.

$$
y=
$$

\qquad
7. $A B C D$ is a rectangle.
$E F G H$ is a trapezium.

All measurements are in centimetres.
The perimeters of these two shapes are the same.
(a) Find algebraic expressions for the perimeter of the rectangle and the perimeter of the trapezium.
\qquad
\qquad
(b) Form and solve an equation from the expressions to find a value for x.

$$
x=\ldots \ldots \ldots(1)
$$

(c) Substitute your value of x to work out the area of the rectangle.
cm^{2}
8. Triangles $A B D$ and $B C D$ are right-angled triangles.

(a) Work out the distance $B D$.

$$
B D=
$$

(b) Thus work out the value of x.

Give your answer correct to 2 decimal places.

$$
x=
$$

\qquad

Mathematical problem solving: Silver Test Grades 5-6			Notes	
Question	Working	Answer		
6 (a)		$x=21, y=50$		process to start solving problem eg. form an appropriate equation
			P	complete process to isolate terms in x
			A	for $x=21$
(c-d)			P	complete process to find second variable
(e)			A	$y=50$
7 (a)		203	P1 translate into algebra for rectangle: $4 x+4 x+3 x+4+3 x+4$ $(=14 x+8)$ or for trapezium: $5 x+5 x+x-3+7 x-3(=18 x-6)$	
				equating: e.g. $18 x-6=14 x+8(4 x=14)$
			A	solving for x : $x=14 / 4=3.5$ oe
			P	process to find area: " 3.5 " $\times 3+4(\mathrm{ft})$ or " 3.5 " $\times 4 \mathrm{ft}$
				cao
$8 \quad \text { (a) }$ (b)		9.54	P	$10^{2}-5^{2}(=75)$
			P	$" 75 "+4^{2}(=91)$
			P	$\sqrt{ }\left(10^{2}-5^{2}+4^{2}\right)$
			P	9.53-9.54

